Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.01.21262969

ABSTRACT

Type I and III interferons (IFN-I/{lambda}) are key antiviral mediators against SARS-CoV-2 infection. Here, we demonstrate that the plasmacytoid dendritic cells (pDCs) are predominant IFN-I/{lambda} source by sensing SARS-CoV-2-infected cells. We show that sensing of viral RNA by pDCs requires sustained cell adhesion with infected cells. In turn, the pDCs restrict viral spread by a local IFN-I/{lambda} response directed toward SARS-CoV-2-infected cells. This specialized function enables pDCs to efficiently turn-off viral replication, likely by a concentrated flux of antiviral effectors at the contact site with infected cells. Therefore, we propose that pDC activation is essential to locally control SARS-CoV-2-infection. By exploring the pDC response in patients, we further demonstrate that pDC responsiveness correlates with the severity of the disease and in particular that it is impaired in severe COVID-19 patients. Thus, the ability of pDCs to respond to SARS-CoV-2-infected cells could be a key to understand severe cases of COVID-19. HighlightsO_LIpDCs are immune cells against SARS-CoV-2-infected cells C_LIO_LIpDC-mediated IFN-I/{lambda} response against SARS-CoV-2 infected cells control COVID- 19 progression C_LIO_LIpDC response by SARS-CoV-2 is restricted to IRF7-prioritized signaling leading to antiviral control C_LIO_LIpDC antiviral response directed toward contacting SARS-CoV-2-infected cells C_LI


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-757455.v1

ABSTRACT

Following severe adverse reactions in patients vaccinated with the AstraZeneca ChadOx1 (Chad) vaccine, European health authorities have recommended that patients under the age of 55 who received one dose of Chad vaccine receive a second dose of Pfizer BNT162b2 (BNT) vaccine as a booster. However, the effectiveness and the immunogenicity of this vaccination regimen have not been formally tested. Here, we show that the heterologous Chad/BNT combination confers better protection against SARS-CoV-2 infection than the homologous BNT/BNT combination in a population of health care workers. To understand the underlying mechanism, we monitored in a longitudinal way the anti-spike immunity conferred by each vaccinal combination. Both combinations induced strong anti-spike antibody responses after boost in all vaccinated individuals. However, sera from heterologous vaccinated individuals displayed a stronger neutralizing activity, regardless of the SARS-CoV-2 variant analyzed, and this was associated with more switched memory RBD-specific B cells with an activated phenotype and less IgA. The Chad vaccine induced a stronger T cell response than the BNT vaccine after the priming dose, and the reciprocal was true for the IgG response, which could explain the complementarity of both vaccines when used in an heterologous setting. This strongly protective vaccination regimen could be therefore particularly suitable for immunocompromised individuals.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL